

Math Virtual Learning Essential Math 4

May 7, 2020

Lesson: May 7, 2020

Objective/Learning Target: I can use multiplication to understand exponents.

You will explore the use of multiplication and its relationship to exponents.

Directions:

- 1. Click through the slides.
- 2. Watch all videos on slides.
- 3. Do what each slide asks on a separate sheet of paper.

Bell Work May 7, 2020

Bell Work Key May 7, 2020

Practice Problems: Unit 11 Lesson 2 page 37

Unit 11 Additional Practice

(1) Write a situation that shows growth by addition and sketch a graph of your story, labeling the axes.

2 Write a situation that shows growth by multiplication and sketch a graph of your story, labeling the axes.

Unit 11 Additional Practice

Answer Key: After completing the problems, check your answers for page 37 here.

① Write a situation that shows growth by addition and sketch a graph of your story, labeling the axes.

(Responses will vary.) Look for reference to a constant rate of change. Graph will vary depending on story and may be increasing or decreasing. Make sure students label the axes.

(2) Write a situation that shows growth by multiplication and sketch a graph of your story, labeling the axes.

(Responses will vary.) Look for reference to doubling, tripling, or other descriptions of multiplication, like growing by a constant percentage growth. Graph will vary depending on story and may show an increasing or decreasing pattern. Make sure students label the axes.

Thinking Out Loud

Michael, Lena, and Jay talk about patterns they see in the table in problem 1.

Michael: Each time we move one step up in the table, we're doubling.

- Jay: These numbers are related in other ways, too. 4 times 4 is 16, and 4 times 8 is 32, and 8 times 8 is 64.
- Michael: So there's more than the doubling pattern. There's also multiplication by 4 and 8. And maybe others, too?

Paus to Th	State of the second second	Describe where in the table you see multiplication by 4, multiplication by 8, and any other multiplication patterns.
Jay:		l, it makes sense that we would see the pattern of multiplying by ecause multiplying by 4 is the same thing as multiplying by 2, then
	mult	tiplying by 2 again.
Lena:	Ohy	eah, you can see that in the table! Since multiplying by 4 is the

- Lena: Oh yeah, you can see that in the table! Since multiplying by 4 is the same thing as doubling two times, multiplying by 4 is the same as jumping up 2 spaces on the table.
- Michael: I see it. Start at 2³, jump up 2 spaces, and you land at 2⁵. You've basically just done 8 times 4, which is 32.

Practice Problems: Unit 11 Lesson 1 (page 37)

③ Figure out the pattern in each table and describe the growth. Is the pattern based on constant addition or constant multiplication? By how much?

a	x	У
	1	2
	2	6
	3	18
	4	54
	5	162
	6	486

Ь	х	у
	1	5
	2	125
1	3	245
	4	365
	5	485
1	6	605

Answer Key: After completing the problems, check your answers for page 37 here.

③ Figure out the pattern in each table and describe the growth. Is the pattern based on constant addition or constant multiplication? By how much?

Practice Problems: Unit 11 Lesson 2 (page 37)

Paulo looks at his homework and sees two problems: a⁴ • a⁴ = _____ and a⁴ + a⁴ = _____ He knows that one of the answers is a⁸ and the other answer is 2a⁴, but he can't remember which is which. Explain the answer to Paulo and show him a way he could *figure out* the answer on his own next time.

Answer Key: After completing the problems, check your answers for page 37 here.

(4) Paulo looks at his homework and sees two problems: $a^4 \cdot a^4 = \underline{\alpha^8}$ and $a^4 + a^4 = \underline{2\alpha^4}$ He *knows* that one of the answers is a^8 and the other answer is $2a^4$, but he can't remember which is which. Explain the answer to Paulo and show him a way he could *figure out* the answer on his own next time.

 $a^4 = a \cdot a \cdot a \cdot a$. So $a^4 \cdot a^4 = a \cdot a$, which equals a^8 . Adding $a^4 + a^4$ is like adding x + x or $\blacktriangle + \bigstar$. The result is $2\blacktriangle$ or 2x or $2a^4$.

(5) Write three equivalent expressions for $5^6 \cdot 5^4$.(6) Write three equivalent expressions for c^0 . $\frac{5^0}{5}$ $5^2 \cdot 5^4 \cdot 5^4$ $\frac{2^{15}}{c^5}$ 1 $5^{12} \cdot 5^{-2}$ 5^{10} $c^2 \cdot c^{-3} \cdot c$ $c^4 \cdot c^{-4}$ (Many possible responses.)(Many possible responses.)(Many possible responses.)

1 How many different ways can you arrange two colors to make a tower that is exactly 3 blocks tall?

This space is for experimenting.

Fun Stuff Key:

Organize your solution in a sensible way here.

Resources were developed at EDC (Education Development Center, Inc). EDC owns the copyright © 2011-2019

