Math Virtual Learning

Essential Math 4

May 7, 2020

Lesson: May 7, 2020

Objective/Learning Target:

 I can use multiplication to understand exponents.
Essential Math 4

You will explore the use of multiplication and its relationship to exponents.

Directions:

1. Click through the slides.
2. Watch all videos on slides.
3. Do what each slide asks on a separate sheet of paper.

Essential Math 4

Bell Work May 7, 2020

MysteryGrid 1, 2, 3, 5

Essential Math 4

Bell Work Key

 May 7, 2020MysteryGrid 1, 2, 3, 5

$20, \bullet$ 5	2	1	3
2	$15,+$ 3	5	$3,+$ 1
$3, \bullet$ 1	5 5	$10,+$ 3	2
3	1	2	5

Practice Problems: Unit 11 Additional Practice

Unit 11 Lesson 2 page 37
(1) Write a situation that shows growth by addition and sketch a graph of your story, labeling the axes.

(2) Write a situation that shows growth by multiplication and sketch a graph of your story, labeling the axes.

Answer Key: Unit 11 Additional Practice

After completing the problems, check your answers for page 37 here.
(1) Write a situation that shows growth by addition and sketch a graph of your story, labeling the axes.


```
(Responses will vary.) Look for reference to a constant
rate of change.
Graph will vary depending on story and may be increasing
or decreasing.
Make sure students label the axes.
```

(2) Write a situation that shows growth by multiplication and sketch a graph of your story, labeling the axes.

(Responses will vary.) Look for reference to doubling,
tripling, or other descriptions of multiplication, like
growing by a constant percentage growth.
Graph will vary depending on story and may show an
increasing or decreasing pattern.
Make sure students label the axes.

Essential Math 4

Thinking Out Loud

Michael, Lena, and Jay talk about patterns they see in the table in problem 1.
Michael: Each time we move one step up in the table, we're doubling.
Jay: These numbers are related in other ways, too. 4 times 4 is 16 , and 4 times 8 is 32 , and 8 times 8 is 64 .

Michael: So there's more than the doubling pattern. There's also multiplication by 4 and 8. And maybe others, too?

Essential Math 4

Pausing
 to Think

Describe where in the table you see multiplication by 4 , multiplication by 8 , and any other multiplication patterns.

Jay: Well, it makes sense that we would see the pattern of multiplying by 4 , because multiplying by 4 is the same thing as multiplying by 2 , then multiplying by 2 again.

Lena: Oh yeah, you can see that in the table! Since multiplying by 4 is the same thing as doubling two times, multiplying by 4 is the same as jumping up 2 spaces on the table.

Michael: I see it. Start at 2^{3}, jump up 2 spaces, and you land at 2^{5}. You've basically just done 8 times 4 , which is 32 .

Essential Math 4

Practice Problems: Unit 11 Lesson 1 (page 37)

(3) Figure out the pattern in each table and describe the growth. Is the pattern based on constant addition or constant multiplication? By how much?
(a)

x	y
1	2
2	6
3	18
4	54
5	162
6	486

(b)

x	y
1	5
2	125
3	245
4	365
5	485
6	605

Essential Math 4

Answer Key: After completing the problems, check your answers for page 37 here.
(3) Figure out the pattern in each table and describe the growth. Is the pattern based on constant addition or constant multiplication? By how much?
(a)

x	y
1	2
2	6
3	18
	$\cdot 3$
4	54
5	162
	$\cdot 3$
6	486

(b)

addition of 120

Essential Math 4

Practice Problems: Unit 11 Lesson 2 (page 37)

(4) Paulo looks at his homework and sees two problems: $a^{4} \cdot a^{4}=\quad$ and $a^{4}+a^{4}=$

He knows that one of the answers is a^{8} and the other answer is $2 a^{4}$, but he can't remember which is which. Explain the answer to Paulo and show him a way he could figure out the answer on his own next time.
(5) Write three equivalent expressions for $5^{6} \cdot 5^{4}$.
(6) Write three equivalent expressions for c^{0}.

Essential Math 4

Answer Key: After completing the problems, check your answers for page 37 here.

(4) Paulo looks at his homework and sees two problems: $a^{4} \cdot a^{4}=a^{8}$ and $a^{4}+a^{4}=2 a^{4}$ He knows that one of the answers is a^{8} and the other answer is $2 a^{4}$, but he can't remember which is which. Explain the answer to Paulo and show him a way he could figure out the answer on his own next time.

```
\mp@subsup{a}{}{4}=a\cdota\cdota\cdota. So \mp@subsup{a}{}{4}\cdot\mp@subsup{a}{}{4}=a\cdota\cdota\cdota, .a\bulleta\cdota\cdota, which equals }\mp@subsup{a}{}{8}\mathrm{ .
Adding }\mp@subsup{a}{}{4}+\mp@subsup{a}{}{4}\mathrm{ is like adding }x+x\mathrm{ or }\mathbf{\Delta}+\boldsymbol{\Delta}\mathrm{ . The result is 2\}\mathrm{ or 2x or 2a4.
```

(5) Write three equivalent expressions for $5^{6} \cdot 5^{4}$. $\frac{51}{5}$

$$
5^{2} \cdot 5^{4} \cdot 5^{4}
$$

$5^{12} \cdot 5^{-2}$
(Many
possible responses.)
(6) Write three equivalent expressions for c^{0}.
$\frac{d^{5}}{c^{5}}$

Here are all four ways you can arrange these colors to make a tower that is exactly 2 blocks tall:

You may not need all the towers.

Fun Stuff:

G
(1) How many different ways can you arrange two colors to make a tower that is exactly $\mathbf{3}$ blocks tall?

This space is for experimenting.

Essential Math 4

Fun Stuff Key:

Organize your solution in a sensible way here.

Essential Math 4

Resources were developed at EDC (Education Development Center, Inc). EDC owns the copyright © 2011-2019

Research-based
National Science Foundation-funded

Learning transforms lives.

